lunes, 21 de septiembre de 2009

Frecuencia Intermedia

Se denomina Frecuencia intermedia (FI) a la Frecuencia que en los aparatos de radio que emplean el principio superheterodino se obtiene de la mezcla de la señal sintonizada en antena con una frecuencia variable generada localmente en el propio aparato mediante un oscilador local (OL) y que guarda con ella una diferencia constante. Esta diferencia entre las dos frecuencias es precisamente la frecuencia intermedia.

En los receptores de radio convencionales el valor de la frecuencia intermedia es normalmente 455 ó 470 kHz, en los receptores de modulación de amplitud (AM) y de 10,7 MHz en los de modulación de frecuencia (FM), aunque en aparatos más sofisticados, los denominados de doble conversión, se utiliza un segundo valor de FI más pequeño. En los receptores de televisión del sistema PAL empleado en Alemania, España y otros países, la FI se selecciona a 38,9 MHz.

La utilidad del empleo de una frecuencia intermedia radica en el hecho de que todos los circuitos sintonizados existentes a partir de la etapa en que se efectúa la mezcla, trabajan a una frecuencia fija (la de la FI) y por tanto son más fáciles de ajustar. De este modo se mejora la selectividad y se facilita el diseño de las etapas amplificadoras. Si no se empleara la frecuencia intermedia, sería preciso diseñar circuitos sintonizadores que tuvieran al mismo tiempo una gran selectividad y un gran rango de selección de frecuencias de actuación, algo difícil y caro de conseguir.

La frecuencia intermedia en el sistema PAL de televisión

En el sistema PAL empleado en Alemania, España y otros países de modulación y transmisión de la señal de TV, la frecuencia intermedia del receptor es de 38,9 MHz. Esta frecuencia varía según la variante del sistema empleado, pero el funcionamiento básico del sistema es el mismo, incluso para el sistema estadounidense NTSC. En adelante, los valores citados para las frecuencias corresponden a las del sistema PAL.

El oscilador local (OL) se hace funcionar a una frecuencia igual a la del canal que se desea seleccionar más la FI. Esta señal se mezcla con la de radiofrecuencia (RF) procedente de la antena, dando lugar a la salida a un desplazamiento e inversión del espectro de la señal: la frecuencia de la portadora de luminancia pasa a 38,9 MHz, y la frecuencia de la portadora de sonido, que en RF es 5,5 MHz mayor que la portadora de luminancia, pasa en FI a ser 5,5 MHz menor que la de luminancia. Es decir, en lenguaje llano, lo que antes estaba "a la izquierda" ahora pasa "a la derecha" y viceversa (inversión del espectro).

PROPAGACIONES DE ONDAS

Propagación por ondas Celestes:

Se les llama ondas celestes a las ondas electromagnéticas que se dirigen sobre el nivel del horizonte.En forma normal las ondas celestes se irradian en un Angulo relativamente grande con la
tierra, se irradian hacia el cielo en donde son reflejadas o refractadas hacia la superficie terrestre por la ionosfera.

Propagación de ondas terrestres:

Una onda terrestre es una onda electromagnética que viaja por la superficie de la tierra, por eso se les llama ondas superficiales.

Ventajas del la propagación de ondas terrestres:

• Con la potencia suficiente de transmision, se pueden usar las ondas terrestres para comunicarse entre dos lugares cualquiera en el mundo.

• Las ondas terrestres se afectan poco por las condiciones variables de la atmosfera

Desventajas del la propagación de ondas terrestres;

• Requieren una potencia de transmisión relativamente alta.

• Se limitan a frecuencias muy bajas, y requieren grandes antenas.

• La perdida en el terreno varia mucho de acuerdo con el material superficial y su composición.

Propagación de las ondas espaciales;

• Incluyen ondas directas (transmisión por línea de vista, LOS) y las reflejadas en el suelo.

Términos y definiciones de propagación:

Frecuencia critica:

– Se define como la máxima frecuencia que se puede propagar directo hacia arriba y es reflejada por la ionosfera.

Angulo critico:

– Es el Angulo vertical máximo al cual se puede propagar una frecuencia y seguir reflejándose por la ionosfera.

Máxima frecuencia útil:

– MUF, es la mayor frecuencia que se puede usar en propagación de ondas celestes entre dos puntos específicos de la superficie terrestre.

• Distancia de salto:

– Es la distancia mínima desde una antena de transmisión a la que regresara a la tierra una onda celeste de determinada frecuencia (debe ser menor que la MUF)

FOSTER SEELEY

Discriminador Foster-Seeley.
El discriminador de fase, más comúnmente denominado discriminador Foster-Seeley, que vemos en la figura 13, es similar al detector Travis. El Foster-Seeley convierte en tensiones de audio las variaciones de frecuencia o fase de las ondas FM o PM que entran en el receptor. Debido a que el circuito también es sensible a las variaciones de amplitud de la onda de FM, es necesaria una etapa limitadora que preceda inmediatamente al discriminador. Los bobinados primario y secundario de T1 se sintonizan a la frecuencia central de FI. Este método de sintonización simplifica enormemente el ajuste del circuito y proporciona una mayor linealidad. La salida del circuito tiene la misma curva de respuesta en forma de S que la del detector Travis.

El Foster-Seeley funciona basándose en el principio de que dos tensiones de ca en serie se suman vectorialmente. Esto significa que la relación de fases entre las dos tensiones es un factor importante al determinar la tensión combinada. La tensión total resultante de dos tensiones de corriente alterna en serie viene determinada por la relación de fase entre las dos tensiones. La entrada al circuito Foster-Seeley es una señal de FI, a través de una etapa limitadora, que varía en +-75kHz, según un índice de audio. La salida del circuito es la señal de audio detectada. El circuito funciona de modo similar al detector Travis. Cuando ambos diodos conducen, se producen tensiones iguales pero de polaridad opuesta en los bornes de R1 y R2, las tensiones tienden a anularse y la salida es 0 V. Sin embargo, si D1 conduce con más fuerza, la salida es una tensión positiva, y si es D2 el que más conduce, la salida es una tensión negativa. Por tanto, la señal de salida de audio puede recuperarse cuando se dan las siguientes condiciones:

1. Ambos diodos conducen exactamente igual a fc.
2. El diodo D1 es más conductor a frecuencias por encima de fc.
3. El diodo D2 es más conductor a frecuencias por debajo de fc.

Por medio del transformador, la señal de FI de entrada se acopla desde la bobina primaria L1 hasta la bobina secundaria con toma central L2-L3. Debido a esta configuración con toma central, la tensión V2 que se genera en L2 está desfasada 180° con respecto a la tensión V3 inducida en L3. La conducción de D1 está controlada por V2, y V3 controla la conducción de D2. Recuérdese que estas dos tensiones son iguales en amplitud pero están desfasadas 180° en fc. La señal de FI de entrada está también capacitivamente acoplada a L4 por medio de C2. En L4 se genera la tensión V4 que también controla la conducción de ambos diodos. La configuración del circuito es tal que V4 está 90° adelantada a V3 y 90° retrasada con respecto a V2. Sin embargo, esto sólo es cierto cuando la señal de FI está en su frecuencia central. Por esta razón, la cantidad de corriente que conduce D1 está determinada por V2 y V4, y la cantidad que conduce D2 está determinada por V3y V4. El resultado Es una tensión de salida cero para la frecuencia de entrada de fc. Puesto que el circuito resonante paralelo resuena a fc, Xl es igual (y anula) a Xc, y el circuito resonante aparece resistivo. Sin embargo, por encima de fc, Xl es mayor que Xc. Así pues, la reactancia neta hace que la fase de V2 se aproxime más a la fase de V4, mientras que V3 se desfasa más con respecto a V4. Este cambio de fase significa que V4 tiende a sumarse a V2 y restarse a de V3, lo que hace que D1 conduzca con más intensidad que D2. Este hecho produce una oscilación de tensión de salida positiva cada vez que la señal de salida FI oscila por encima de fc. A frecuencias por debajo de fc, Xc es mayor que Xl y la reactancia neta varía la fase de V2 y V3 en dirección contraria. En este caso, V4 tiende a sumarse a V3 y a restarse de V2. El diodo D2 conduce con más intensidad que el diodo D1, produciendo una tensión de salida negativa. Así pues, cada vez que la señal de FI oscila por debajo de fc, la salida tiene una tensión oscilante negativa. Gracias a esta oscilación de la tensión de salida positiva-negativa, el discriminador produce una onda sinusoidal de salida. Así pues, la señal recuperada es una reproducción de la señal moduladora original.

MUF

La frecuencia máxima utilizable (MUF, de sus siglas en inglés: Maximum usable frequency) describe la máxima frecuencia que puede utilizarse para establecer una comunicación entre dos puntos, utilizando la propagación por reflexión ionosférica.

La MUF es una predicción numérica para un día determinado y a una hora determinada, con un 50% de error. Se la calcula como una frecuencia mediana que predice eficazmente la MUF el 50% de los días de un mes.

En la práctica, hay que tomar un 80 a un 90% de la MUF para tener una frecuencia práctica utilizable.


DEMODULADOR DE FM


Si el PLL es enganchado a una señal de frecuencia modulada (FM), el VCO rastrea la frecuencia instantánea de la señal de entrada. La tensión de error filtrada, que fuerza al VCO a mantener enganche con la señal de entrada, lue go se convierte en la salida de FM de modulada. La linealidad de esta señal demodulada depende solamente de la linealidad de la característica de trans ferencia tensión de control a frecuencia del VCO. Los multivibradores RC son utilizados en las aplicaciones del PLL como demodulador de FM porque tienen un intervalo de control mucho más grande que los osciladores de cristal, pero su estabilidad frente a los posibles cambios producidos por el paso del tiempo y por la temperatura no es muy buena.

Debe notarse que, dado que el PLL está enganchado durante el proceso de demodulación de FM, la respuesta es lineal y puede ser prevista fácilmente a partir de un planteo de lugar geométri co de las raíces.

Las aplicaciones de demodulación de FM son numerosas; sin embargo, algunas de las más populares son:

Detección de FM Difundida (o Transmitida)

Aquí, el PLL puede ser usado como un detector completo de franja FI, FM y como limitador para detectar, ya sean señales de FM de banda ancha o de banda angosta, con mayor linealidad de la que puede obtenerse por otros medios. Para frecuencias dentro del rango del VCO, el PLL funciona como un receptor contenido en sí mismo, dado que combina las funciones de selectividad de fre cuencia y demodulación. Un uso crecientemente popular del PLL es en receptores de exploración (scanning-receivers) donde se puede monitorear secuencialmen te un número de canales, trans mitidos mediante la simple varia ción de la frecuencia de operación libre del VCO.

Telemetría FM

Esta aplicación involucra la demo dulación de una subportadora de fre cuencia modulada del canal principal. Un ejemplo popular aquí es el uso del PLL para recuperar la señal SCA (hilo musical, por ejemplo) de la señal com binada de muchas estaciones de ra diodifusión de FM comerciales. La se ñal SCA puede ser una subportadora modulada de 67kHz, que la pone por encima del espectro de frecuencias del material normal estéreo o monoaural de los programas de FM. Conectando el circuito, que vemos en la figura 8, a un punto entre el discriminador de FM y el filtro desenfatizador de un re ceptor de FM de banda comercial (ca sera) y sintonizando el receptor a una estación que difunde música SCA, uno puede obtener horas de música ambiental libre de anuncios comerciales.


MODULACIÓN ANGULAR

En una señal analógica pueden variar tres propiedades: la amplitud, la frecuencia y la fase. En el trabajo anterior estudiamos la modulación de amplitud AM. A continuación se tratara sobre la modulación de frecuencia (FM) y la modulación (PM), la modulación de frecuencia y en fase, son ambas formas de modulación angular.

Desdichadamente, a ambas formas de modulación angular se les llama simplemente FM cuando en realidad, existe una diferencia clara aunque sutil, entre las dos. Existen varias ventajas en utilizar la modulación angular en vez de la modulación de amplitud, tal como la reducción delruido, la fidelidad mejorada del sistema y el uso más eficiente de la potencia. Sin embargo, FM y PM, tienen varias desventajas importantes, las cuales incluyen requerir un ancho de banda extendida y circuitos más complejos, tanto en el transmisor, como en el receptor.

La modulación angular fue introducida en el año 1931, como una alternativa a la modulación en amplitud. Se sugirió que la onda con modulación angular era menos susceptible al ruido que AM y consecuentemente, podía mejorar el rendimiento de las comunicaciones de radio. El mayor E.H. Armstrong desarrollo el primer sistema radio FM con éxito, en 1936 (quien también desarrollo el receptor superheterodino) y, en julio de 1939, la primera radiodifusión de señalesFM programada regularmente comenzó en Alpine, New Jersey. Actualmente la modulación angular se usa extensamente para la radio difusión de radio comercial, transmisión de sonido detelevisión, radio móvil de dos sentidos, radio celular y los sistemas de comunicaciones pormicroondas y satélite.

Conceptos generales

La expresión general para una portadora sin modulación puede escribirse como:

(1)

Donde:

V(t) = Valor instantáneo del voltaje.

Vc = Amplitud máxima.

ω = Frecuencia angular en rad/s.

φ = Angulo de fase en radianes.

Dispositivos de microondas

La ingeniería de microondas/milimétricas tiene que ver con todos aquéllos dispositivos, componentes y sistemas que trabajen en el rango frecuencial de 300 MHz a 300 GHz. Debido a tan amplio margen de frecuencias, tales componentes encuentran aplicación en diversos sistemas de comunicación. Ejemplo típico es un enlace de Radiocomunicaciones terrestre a 6 GHz en el cual detrás de las antenas emisora y receptora, hay toda una circuitería capaz de generar, distribuir, modular, amplificar, mezclar, filtrar y detectar la señal. Otros ejemplos lo constituyen los sistemas de comunicación por satélite, los sistemas radar y los sistemas de comunicación móviles, muy en boga en nuestros días.

La tecnología de semiconductores, que proporciona dispositivos activos que operan en el rango de las microondas, junto con la invención de líneas de transmisión planares; ha permitido la realización de tales funciones por circuitos híbridos de microondas.

En estos circuitos, sobre un determinado sustrato se definen las líneas de transmisión necesarias. Elementos pasivos (condensadores, resistencias) y activos (transistores, diodos) son posteriormente incorporados al circuito mediante el uso de pastas adhesivas y técnicas de soldadura. De ahí el nombre de tecnología híbrida de circuitos integrados (HMIC: "Hibrid Microwave Integrated Circuit"). Recientemente, la tecnología monolítica de circuitos de microondas (MMIC), permite el diseño de circuitos/subsistemas capaces de realizar, muchas de las funciones mencionadas anteriormente, en un sólo "chip". Por las ventajas que ofrece ésta tecnología, su aplicación en el diseño de amplificadores para receptores ópticos, constituye un campo activo de investigación y desarrollo. Prueba de ello es el trabajo realizado con la Universidad Politécnica de Madrid.

El diseño de circuitos de microondas en ambas tecnologías, ha exigido un modelado preciso de los diferentes elementos que forman el circuito. De especial importancia son los dispositivos activos (MESFET, HEMT, HBT); pues conocer su comportamiento tanto en pequeña señal como en gran señal (régimen no lineal), es imprescindible para poder predecir la respuesta de un determinado circuito que haga uso de él. El análisis, modelado y simulación de éstos dispositivos, constituye otra de las áreas de trabajo

Materiales en comunicaciones

La utilización de nuevos materiales con altas prestaciones es uno de los pilares del avance espectacular de las tecnologías de la información y comunicaciones. El desarrollo de aplicaciones basadas en sus propiedades requiere un profundo conocimiento previo de éstas. En particular, el descubrimiento de superconductividad en óxidos cerámicos multimetálicos a temperaturas superiores a 77 K (superconductores de alta temperatura, SAT) puede permitir del desarrollo práctico de algunas aplicaciones de la superconductividad económicamente inviables con los superconductores clásicos. Sin embargo, la gran complejidad de los SAT y su naturaleza granular dificultan la puesta en marcha de aplicaciones de los mismos de forma inmediata, a pesar del gran esfuerzo investigador que en este campo se está realizando en los países avanzados. En concreto, en nuestro grupo se ha trabajado en la caracterización experimental y modelado fenomenológico de las propiedades electromagnéticas de superconductores de alta temperatura crítica, incidiendo especialmente en las implicaciones de la granularidad, y en el desarrollo de aplicaciones de los mismos en magnetometría y en cintas para el transporte de corriente sin pérdidas. Por otra parte, en relación con las aplicaciones de la superconductividad clásica, se ha trabajado en la implementación en España de los patrones primarios de tensión (efecto Josephson) y resistencia (efecto Hall cuántico), en colaboración con grupos nacionales y extranjeros especializados en metrología eléctrica básica. Por último, también se ha colaborado con otros grupos de investigación en la caracterización electromagnética de materiales de interés tecnológico, como imanes permanentes o aceros estructurales

TRANSMISIÓN SIN CABLES

INTRODUCCION

Cuando se piensa en comunicación de datos generalmente se piensa en comunicación a través de cable, debido a que la mayoría de nosotros tratamos con este tipo de tecnología en nuestro día a día. Haciendo a un lado las complicadas redes cableadas también tenemos la llamada COMUNICACIÓN INALÁMBRICA muy comúnmente a nuestro alrededor.

La Comunicación de data inalámbrica en la forma de microondas y enlaces de satélites son usados para transferir voz y data a larga distancia. Los canales inalámbricos son utilizados para la comunicación digital cuando no es económicamente conveniente la conexión de dos puntos vía cable; además son ampliamente utilizados para interconectar redes locales (LANS) con sus homologas redes de área amplia (WANS) sobre distancias moderadas y obstáculos como autopistas, lagos, edificios y ríos. Los enlaces vía satélite permiten no solo rebasar obstáculos físicos sino que son capaces de comunicar continentes enteros, barcos, rebasando distancia sumamente grandes.

Los sistemas de satélites y de microondas utilizan frecuencias que están en el rango de los MHz y GHz, usualmente utilizan diferentes frecuencias para evitar interferencias pero comparten algunas bandas de frecuencias.

COMUNICACIÓN VÍA MICROONDAS

Básicamente un enlace vía microondas consiste en tres componentes fundamentales: El Transmisor, El receptor y El Canal Aéreo. El Transmisor es el responsable de modular una señal digital a la frecuencia utilizada para transmitir, El Canal Aéreo representa un camino abierto entre el transmisor y el receptor, y como es de esperarse el receptor es el encargado de capturar la señal transmitida y llevarla de nuevo a señal digital.

El factor limitante de la propagación de la señal en enlaces microondas es la distancia que se debe cubrir entre el transmisor y el receptor, además esta distancia debe ser libre de obstáculos. Otro aspecto que se debe señalar es que en estos enlaces, el camino entre el receptor y el transmisor debe tener una altura mínima sobre los obstáculos en la vía, para compensar este efecto se utilizan torres para ajustar dichas alturas.

ANTENAS Y TORRES DE MICROONDAS

La distancia cubierta por enlaces microondas puede ser incrementada por el uso de repetidoras, las cuales amplifican y redireccionan la señal, es importante destacar que los obstáculos de la señal pueden ser salvados a través de reflectores pasivos. Las siguientes figuras muestran como trabaja un repetidor y como se ven los reflectores pasivos.








La señal de microondas transmitidas es distorsionada y atenuada mientras viaja desde el transmisor hasta el receptor, estas atenuaciones y distorsiones son causadas por una perdida de poder dependiente a la distancia, reflexión y refracción debido a obstáculos y superficies reflectoras, y a pérdidas atmosféricas.

La siguiente es una lista de frecuencias utilizadas por los sistemas de microondas:

Common Carrier Operational Fixed

2.110 2.130 GHz

1.850 1.990 GHz

2.160 2.180 GHz

2.130 2.150 GHz

3.700 4.200 GHz

2.180 2.200 GHz

5.925 6.425 GHz

2.500 2.690 GHz

10.7 11.700 GHz

6.575 6.875 GHz

12.2 12.700 GHz

Debido al uso de las frecuencias antes mencionadas algunas de las ventajas son:

Antenas relativamente pequeñas son efectivas.

A estas frecuencias las ondas de radio se comportan como ondas de luz, por ello la señal puede ser enfocada utilizando antenas parabólicas y antenas de embudo, además pueden ser reflejadas con reflectores pasivos.

Ora ventaja es el ancho de banda, que va de 2 a 24 GHz.

Como todo en la vida, el uso de estas frecuencias también posee desventajas:

Las frecuencias son susceptibles a un fenómeno llamado Disminución de Multicamino (Multipath Fafing), lo que causa profundas disminuciones en el poder de las señales recibidas.

A estas frecuencias las perdidas ambientales se transforman en un factor importante, la absorción de poder causada por la lluvia puede afectar dramáticamente el Performance del canal.